

Universidade de São Paulo Brasil

CONCURSO ESPECIALISTA EM LABORATÓRIO DRH USP ESPECIALIDADE: ANÁLISE MINERAL COM MICROSSONDA ELETRÔNICA EDITAL RH Nº 087/2024

Instruções

- 1. Só abra este caderno quando o fiscal autorizar.
- 2. Verifique se o seu nome está correto na capa deste caderno e se a folha de respostas pertence ao **grupo EAM**. Informe ao fiscal de sala eventuais divergências.
- 3. Durante a prova, são **vedadas** a comunicação entre candidatos e a utilização de qualquer material de consulta e de aparelhos de telecomunicação.
- 4. Duração da prova: 4 (quatro) horas e meia. Cabe ao(à) candidato(a) controlar o tempo com base nas informações fornecidas pelo fiscal. O(A) candidato(a) poderá retirar-se da sala definitivamente após decorridas 2 (duas) horas de prova. Não haverá tempo adicional para preenchimento da folha de respostas.
- 5. Lembre-se de que a FUVEST se reserva ao direito de efetuar procedimentos adicionais de identificação e controle do processo, visando a garantir a plena integridade do exame. Assim, durante a realização da prova, será coletada por um fiscal uma **foto** do(a) candidato(a) para fins de reconhecimento facial, para uso exclusivo da USP e da FUVEST. A imagem não será divulgada nem utilizada para quaisquer outras finalidades, nos termos da lei.
- 6. Após a autorização do fiscal da sala, verifique se o caderno está completo. Ele deve conter 60 (sessenta) questões objetivas, com 5 (cinco) alternativas cada e 1 (uma) questão dissertativa. Informe ao fiscal de sala eventuais divergências.
- 7. O(a) candidato(a) deverá escolher e responder a 45 questões objetivas dentre as 60 questões que compõem a prova. Serão consideradas apenas as 45 primeiras questões preenchidas na folha de respostas
- 8. Preencha as folhas de respostas com cuidado, utilizando caneta esferográfica de **tinta azul ou preta**. As folhas de respostas **não serão substituídas** em caso de rasura.
- 9. Ao final da prova, é obrigatória a devolução das folhas de respostas acompanhadas deste caderno de questões.

Declaração

Declaro que li e estou ciente das informações que constam na capa desta prova, na folha de respostas, bem como dos avisos que foram transmitidos pelo fiscal de sala.

ASSINATURA

O(a) candidato(a) que não assinar a capa da prova será considerado(a) ausente da prova.

Fonte: Folha de São Paulo

A respeito da *charge* apresentada, "Festa Junina da escola" faz menção

- (A) à circunstância de, na contemporaneidade, apenas se realizarem festas do cancioneiro popular em escolas públicas.
- (B) ao costume de o Estado queimar livros em praça pública, que caracterizou todo o período democrático brasileiro.
- (C) ao Index Librorum Prohibitorum elaborado pela Igreja Católica Apostólica Romana no período da perseguição romana aos cristãos.
- (D) à onda recente de proibição de que escolas trabalhem a leitura de certos livros considerados, por alguns, como ofensivos aos valores tradicionais.
- (E) à prática de se queimarem vivas as pessoas acusadas de heresia no contexto da contrarreforma católica.

02

Fonte: https://www.facebook.com/desenhosdonando/

Um dos efeitos que a eventual aprovação do Projeto de Lei nº 1904/2024 provocaria no ordenamento jurídico brasileiro está retratado de maneira crítica na *charge* apresentada.

Trata-se da circunstância de

- (A) majoração da pena do aborto, mesmo na hipótese de gravidez decorrente de estupro, havendo feto viável.
- (B) minoração da pena do estupro de que não resulte gravidez da vítima.
- (C) majoração da pena do estupro de que resulte gravidez da vítima, havendo feto viável.
- (D) proibição da prática do aborto em caso de gravidez da vítima de estupro.
- (E) permissão da prática do aborto em caso de gravidez da vítima de estupro, havendo feto viável.

TEXTO PARA AS QUESTÕES 03 E 04

No capítulo "Psicopolítica", de *No enxame*, Byung Chul-Han contrapõe três diferentes conceitos de poder: o poder da espada, o biopoder e o psicopoder.

03

Com base na leitura da obra, é possível afirmar que o biopoder se caracteriza

- (A) pela constante ameaça do soberano relativamente aos súditos, que se exerce pelo controle da força.
- (B) pela aptidão, que essa forma de poder tem, de mapear o inconsciente da coletividade humana.
- (C) pela coleta e análise de dados experienciais que permitirão a organização e o controle da população.
- (D) pela superação do Estado de natureza, em que vigorava a lei do mais forte com ameaça constante à vida humana.
- (E) pela impossibilidade de tratamento de dados sensíveis, que são protegidos por leis contemporâneas.

04

Com base na leitura da obra, é possível afirmar que o psicopoder se manifesta por meio de estruturas sociais que permitem

- (A) organizar informações com a finalidade de controlar a população, como é o caso dos órgãos públicos de planejamento.
- (B) predizer o futuro a partir de sensações, como é o caso da inteligência artificial generativa.
- (C) conhecer modelos de comportamento que tornam prognósticos possíveis, como é o caso das chamadas *big techs*.
- (D) adentrar o inconsciente das pessoas por meio de tecnologias preditivas.
- (E) empoderar a psicopolítica a partir do comportamento social das massas ao acessar a sua consciência.

"A urbanização no Brasil é tardia. Ainda nas décadas de 1960 e 1970, havia campanhas para as pessoas saírem do campo e irem para os centros urbanos, o que acarretou um grande êxodo rural. Muita gente saiu da zona rural para liberar a área para o agronegócio e foi passar fome nas cidades".

Ailton Krenak. Futuro ancestral.

A cidade de inspiração ocidental, na análise do autor, pode ser caracterizada como uma estrutura

- (A) consumidora de insumos e promotora de riqueza.
- (B) consumidora de energia e promotora de pobreza.
- (C) produtora de insumos e consumidora de energia.
- (D) promotora de felicidade e consumidora de insumos.
- (E) produtora de energia e promotora de riqueza.

TEXTOS PARA AS QUESTÕES 06 A 08

Ana é uma Especialista em Laboratório com muita experiência. Servidora da Universidade há 25 anos, acompanhou o desenvolvimento tecnológico de um importante laboratório em que está lotada, sediado numa tradicional unidade da USP. Pedro, Professor Titular há 2 anos e atual responsável pelo laboratório, iniciou sua trajetória na USP como pós-graduando proveniente de outra unidade da federação, realizou seu pós-doutoramento no exterior, ingressou na carreira dos servidores técnicos e administrativos da USP como Especialista em Laboratório e, posteriormente, passou a integrar a carreira docente, por concurso realizado há 16 anos. Como já trabalhava no laboratório, foi integrado por Juan, docente responsável pelo laboratório à época, a quem acabou sucedendo posteriormente.

Recentemente, Ana notou que uma informação relevante e decorrente das pesquisas ali desenvolvidas foi publicada num artigo científico não ligado diretamente ao grupo de pesquisa, em que figura como coautora a companheira de Angélica, uma das Professoras que compunha a equipe de Juan e que, após ter sido derrotada no concurso vencido por Pedro, requereu sua transferência para outra Unidade do mesmo campus.

Com base no Código de Ética da USP, Ana decide informar os fatos ao Professor Pedro. Sem prejuízo de outras providências, Pedro pede a Ana que reúna a equipe do laboratório para uma conversa em que pretende reforçar o dever de sigilo a respeito das pesquisas ali realizadas. Antes, porém, pede a Ana que o ajude a embasar normativamente sua ideia.

Após a reunião, Pedro decide reler o Código de Ética da Universidade para saber que comportamento adotar ante sua suspeita de que a Professora Angélica tenha infringido normas éticas ao supostamente revelar à sua companheira o conteúdo das pesquisas desenvolvidas no laboratório enquanto ela esteve ali integrada.

06

Com base nas informações dadas e nos seus conhecimentos a respeito da carreira docente na USP, é possível afirmar que Pedro fez parte das seguintes categorias docentes, em ordem hierárquica:

- (A) Professor Doutor, Professor Associado e Professor Titular.
- (B) Professor Associado e Professor Titular.
- (C) Professor Pós-Doutor, Professor Livre-Docente e Professor Titular.
- (D) Professor Doutor, Professor Pós-Doutor e Professor Titular.
- (E) Professor Doutor, Professor Adjunto, Professor Associado e Professor Titular.

07

Ana sabe que você, Especialista lotado(a) naquele laboratório, prestou o recente concurso em que foram cobrados conhecimentos acerca das normativas da USP e pede sua ajuda. Você sugere a Ana que o Professor Pedro reforce com a equipe o dever ético de

- (A) orientar seus colaboradores para que respeitem o segredo profissional a que estão obrigados por lei.
- (B) não usar dados pessoais de registros para discriminar ou estigmatizar subordinados.
- (C) evitar conflito de interesses na alocação de tempo e esforços em atividades não universitárias.
- (D) não participar de decisões que envolvam a seleção, contratação, promoção ou rescisão de contrato, pela Universidade, de membro de sua família.
- (E) evitar o acesso a informações confidenciais por quaisquer pessoas, mesmo que estejam para isso credenciadas.

80

Após a releitura do Código de Ética pelo Professor Pedro, ele deverá comunicar sua suspeita

- (A) ao Diretor da Unidade em que Angélica está lotada atualmente.
- (B) ao Diretor da Unidade a que está vinculado o laboratório, para que ele instaure um processo disciplinar.
- (C) à Comissão de Ética da USP, dada a natureza da infração, por intermédio de seu diretor.
- (D) à chefia de gabinete da Reitoria da USP, já que há conflito entre unidades diversas, por intermédio de seu diretor.
- (E) à Comissão de Legislação e Recursos, pois há violação de leis federais na conduta descrita, por intermédio de seu diretor.

TEXTOS PARA AS QUESTÕES 09 E 10

Texto 1

O que é o USP Multi?

O USP Multi é uma plataforma, administrada pela Pró-Reitoria de Pesquisa da USP, para cadastramento de centrais ou laboratórios multiusuários. Esta plataforma torna o parque de equipamentos da Instituição visível e de fácil acesso ao compartilhamento, podendo ser acessado por usuários de qualquer local.

A plataforma também atende a necessidade de gestão estratégica da infraestrutura institucional, ajuda os pesquisadores na gestão dos equipamentos multiusuários, auxilia o usuário na busca do equipamento necessário para sua pesquisa, análise de dados ou desenvolvimento tecnológico, aumentando a interação entre os diferentes grupos, além de garantir transparência de uso dos equipamentos às agências de financiamento.

Fonte: https://uspmulti.prp.usp.br/

Texto 2 Programa de Equipamentos Multiusuários (EMU)

O Programa de Equipamentos Multiusuários (EMU) tem por objetivo apoiar a aquisição de Equipamentos para Pesquisa que não podem, ordinariamente, ser adquiridos em Auxílios à Pesquisa Regulares ou Projetos Temáticos. O Programa EMU pode apoiar também, quando necessário, os custos para suprimentos e serviços necessários à instalação e operacionalização do Equipamento Multiusuário solicitado.

O programa tem natureza infra-estrutural e não se destina a prover o financiamento convencional aos projetos de pesquisa que sustentam cada solicitação - o apoio à realização desses projetos deve ser buscado nas linhas próprias de financiamento à pesquisa.

Fonte: https://fapesp.br/emu/

09

O Regimento Geral da USP não possui regras sobre laboratórios. No entanto, os laboratórios são mencionados no art. 52 do Estatuto da Universidade, no Título sobre as Unidades. Nos termos desse artigo do Estatuto, os laboratórios são vinculados administrativamente às(aos)

- (A) Conselhos centrais.
- (B) Núcleos de Apoio.
- (C) Unidades de Ensino e Pesquisa.
- (D) Departamentos.
- (E) Comissões estatutárias.

10

No contexto dos textos apresentados e do Estatuto da Universidade, é possível afirmar que a USP

- (A) enfrenta muitas dificuldades para estabelecer e colocar em funcionamento os laboratórios de uso comum em razão da exigência estatutária de sua vinculação administrativa a uma estrutura específica das Unidades.
- (B) serviu de modelo para que a FAPESP estabelecesse o Programa de Equipamentos Multiusuários, que passou a ser adotado por outras instituições de ensino e pesquisa do estado de São Paulo.
- (C) foi a instituição em que a FAPESP implantou o piloto do Programa de Equipamentos Multiusuários, uma vez que era a única das instituições paulistas que previa a existência de laboratórios de uso comum.
- (D) enfrentou uma longa greve dos pesquisadores e dos especialistas em laboratório, contrários à política indutora da FAPESP de privilegiar o fomento às propostas elaboradas no âmbito do Programa de Equipamentos Multiusuários.
- (E) já prevê a existência de laboratórios de uso comum desde a aprovação de seu estatuto, mas pode institucionalizá-los e fomentá-los mais facilmente a partir do estabelecimento, pela FAPESP, do Programa de Equipamentos Multiusuários.

11

No sorteio para os jogos das oitavas de final da Taça Libertadores de 2024, foram utilizados dois potes: Pote1 com os classificados em primeiro lugar nos oito grupos da fase inicial e Pote2 com os classificados em segundo lugar destes mesmos grupos. No Pote1 havia quatro times brasileiros (Atlético-MG, Fluminense-RJ, Palmeiras-SP e São Paulo-SP), dois times bolivianos, um argentino e um colombiano. No Pote2, havia três times brasileiros (Botafogo-RJ, Flamengo-RJ e Grêmio-RS), dois argentinos, dois uruguaios e um chileno. Cada jogo das oitavas de final envolve, por sorteio, um time do Pote1 contra um time do Pote2. Para o sorteio do primeiro jogo, a maior chance é de acontecer um confronto envolvendo

- (A) os times de um mesmo grupo da fase inicial.
- (B) só times brasileiros.
- (C) dois times cariocas.
- (D) dois times argentinos.
- (E) um time paulista e um carioca.

A solução da inequação $\frac{(x^2-x-6)(-x^2+2)}{(x^3-1)} \ge 0$ é

(A) $\{x \in \mathbb{R}: x \le -2 \text{ ou } -\sqrt{2} \le x < 1 \text{ ou } \sqrt{2} \le x \le 3\}$

(B) $\{x \in \mathbb{R}: x \le -2 \text{ ou } -\sqrt{2} \le x \le 1 \text{ ou } \sqrt{2} \le x \le 3\}$

(C) $\{x \in \mathbb{R}: x \le -2 \text{ ou } -\sqrt{2} \le x < 1 \text{ ou } 1 < x \le 3\}$

(D) $\{x \in \mathbb{R}: x \le -2 \text{ ou } -\sqrt{2} \le x \le 1 \text{ ou } 2 \le x \le 3\}$

(E) $\{x \in \mathbb{R}: x \le -2 \text{ ou } -\sqrt{2} \le x < 1 \text{ ou } \sqrt{2} \le x\}$

13

A imagem e o período da função f(x) = 3 + 2 sen(5x + 1) são, respectivamente,

(A) [1,5] e $\frac{3\pi}{5}$

(B) [-2,2] e $\frac{2\pi}{5}$

(C) [-2,2] e $\frac{3\pi}{5}$

(D) [1,5] e $\frac{2\pi}{5}$

(E) [0,4] e 2π

14

Considere dois conjuntos A e B tais que B está contido dentro de A. Sabendo-se que A possui 45 subconjuntos distintos com 2 elementos e que, destes, um terço só possui elementos de B, o número de elementos que pertencem a A mas não a B será:

(A) 6

(B) 5

(C) 4

(D) 3

(E) 2

15

O volume de uma pirâmide regular de base hexagonal de lado igual a 2 metros e altura de 5 metros é (em metros ao cubo)

(A) $\frac{20\sqrt{3}}{3}$

(B) $10\sqrt{3}$

(C) $\frac{10\sqrt{3}}{3}$

(D) $5\sqrt{3}$

(E) $5\sqrt{3}$

16

Considere dois números inteiros positivos a e b com a < b. As médias geométrica e aritmética dos números a, b e 12 são, respectivamente, iguais a 6 e 7. Então, a média ponderada de a, b e 12 com pesos dados por uma progressão aritmética com termo inicial igual a 2 e razão 3 será

(A) $\frac{44}{5}$

(B) $\frac{40}{5}$

(C) $\frac{36}{5}$

(D) $\frac{32}{5}$

(E) $\frac{28}{5}$

A solução da equação $2^x + 1 = 2^{-x}$ é

(A)
$$\log_{10}\left(\frac{-1+\sqrt{5}}{2}\right)$$

(B)
$$\log_{10}\left(\frac{-1+\sqrt{5}}{2}\right)$$
 ou $\log_{10}\left(\frac{-1-\sqrt{5}}{2}\right)$

(C)
$$\log_2\left(\frac{-1+\sqrt{5}}{2}\right)$$
 ou $\log_2\left(\frac{-1-\sqrt{5}}{2}\right)$

(D)
$$\log_2\left(\frac{-1+\sqrt{3}}{2}\right)$$

(E)
$$\log_2\left(\frac{-1+\sqrt{5}}{2}\right)$$

TEXTO PARA QUESTÕES DE 18 A 20

Giant Viruses Discovered in Arctic Ice Could Slow Sea-Level Rise

Hordes of giant viruses are living on the world's second-largest body of ice — and may be slowing the impacts of climate change. Scientists announced the discovery in a recent paper on the Greenland ice sheet. Some of the viruses, they say, have infected algae, potentially limiting the growth of colored snow blooms that can speed up ice melt and raise global sea levels. "They infect the microalgae", said Laura Perini, one of the paper's lead authors and a researcher at Denmark's Aarhus University. "If they kill the algae, then they kind of reduce the speed with which the ice is melting."

The Greenland ice sheet is the largest single contributor to global sea level rise. Algae can darken the surface of the snow, causing it to absorb more sunlight and melt at faster rates. Researchers suspect that the newly discovered viruses help control that algal growth. That theory isn't yet confirmed — and scientists aren't sure exactly how much algae contributes to melting on the Greenland ice sheet. But algal blooms are growing larger as the planet warms, Perini said, making it important to investigate the factors that affect their growth.

Since being classified in the 1980s, scientists have found giant viruses — or nucleocytoplasmic large DNA viruses — all over the world in soil, rivers and oceans. Perini and her team wanted to find out if they also inhabited icy Greenland. Researchers conducted genetic analyses on samples taken from the ice sheet. They found viral genes hiding in algal cells,

indicating that the viruses have been infecting the algae populations for a while — likely hundreds of years.

Scientific American. June 24, 2024. Adaptado.

18

Sobre a relação entre as algas e o derretimento das geleiras, pode-se afirmar:

- (A) visto que os vírus gigantes infectam as algas, eles são responsáveis pela desaceleração do processo de derretimento das geleiras polares.
- (B) embora os vírus gigantes infectem as algas, esse fenômeno acelera o crescente processo de derretimento das geleiras da Groenlândia.
- (C) dado que os vírus gigantes infectam as algas e as levam à morte, essa ocorrência resulta na redução de um processo nocivo ao planeta.
- (D) uma vez que os vírus gigantes são danosos às geleiras da Groenlândia, seus efeitos possibilitam o derretimento acelerado da neve local.
- (E) à medida que a proliferação de vírus gigantes ocorre, há um aumento exponencial de algas que resultam no descongelamento das geleiras.

19

No texto, o termo que geralmente se refere a fenômenos onde organismos crescem é

- (A) "Lead" (1º parágrafo)
- (B) "Darken" (2º parágrafo)
- (C) "Raise" (1º parágrafo)
- (D) "Blooms" (2º parágrafo)
- (E) "Speed up" (1º parágrafo)

20

De acordo com o texto, pode-se concluir que as algas,

- (A) responsáveis por escurecer a superfície da neve, induzem uma maior infiltração de luz solar e um derretimento mais veloz.
- (B) cujo crescimento é causado por vírus gigantes, representam a solução para inibir o progressivo aquecimento global.
- (C) cujo florescimento limita a coloração da neve, aceleram o derretimento das calotas polares e aumentam o nível dos oceanos.
- (D) promotoras do desaceleramento das mudanças climáticas, limitam potencialmente problemas iminentes.
- (E) objeto de estudo de uma pesquisadora dinamarquesa, reduzem a velocidade com a qual as geleiras derretem.

TEXTO PARA AS QUESTÕES DE 21 A 23

Out of Sight, 'Dark Fungi' Run the World from the Shadows

If you want to discover a hidden world of new lifeforms, you don't have to scour dark caves or slog through
remote rainforests. Just look under your feet. When thengraduate student Anna Rosling went to northern Sweden to
map the distribution of a particular root-loving fungus, she
found something much more intriguing: Many of her root
samples contained traces of DNA from unknown species.
Weirder still, she never encountered a complete organism.
When the field season ended, she had only isolated bits of raw
genetic material. The fragments clearly belonged to the fungal
kingdom, but they revealed little else. "I got obsessed," recalls
Rosling, now a professor of evolutionary biology at Uppsala
University in Sweden.

Since then, mycologists have realized that such phantoms are everywhere. Point to a patch of dirt, a body of water, even the air you're breathing, and odds are that it is teeming with mushrooms, molds and yeasts (or their spores) that no one has ever seen. In ocean trenches, Tibetan glaciers and all habitats between, researchers are routinely detecting DNA from obscure fungi. By sequencing the snippets, they can tell they're dealing with new species, thousands of them, that are genetically distinct from any known to science. They just can't match that DNA to tangible organisms growing out in the world.

These slippery beings are so widespread that scientists are calling them "dark fungi." It's a comparison to the equally elusive dark matter and dark energy that make up 95 percent of our universe and exert tremendous influence on, well, everything. Like those invisible entities, dark fungi are hidden movers and shakers. Scientists are convinced they perform the same vital functions as known fungi, directing the flow of energy through ecosystems as they break down organic matter and recycle nutrients. Dark fungi are prime examples of what biologist E. O. Wilson called "the little things that run the world." But their cryptic lifestyle has made it a maddening challenge for scientists trying to show how exactly they run it.

Scientific American. June 21, 2024. Adaptado.

21

De acordo com a oração "By sequencing the snippets, they <u>can</u> tell they're dealing with new species" no segundo parágrafo, o uso do verbo modal *can* indica

- (A) sugestão.
- (B) permissão.
- (C) capacidade.
- (D) necessidade.
- (E) obrigação.

22

No final do segundo parágrafo, a oração "They just can't match that DNA to tangible organisms growing out in the world" apresenta o emprego do pronome pessoal para a terceira pessoa do plural *they* que se refere anaforicamente

- (A) às geleiras tibetanas.
- (B) aos pesquisadores.
- (C) às novas espécies.
- (D) aos organismos tangíveis.
- (E) aos habitats.

23

No que tange à observação do biólogo E. O. Wilson em relação aos fungos escuros, é possível inferir que

- (A) embora os fungos escuros sejam fáceis de detectar, sua função ecológica é irrelevante, ao contrário de outros pequenos organismos que sustentam a vida na Terra, conforme a descrição do biólogo.
- (B) a descoberta dos fungos escuros subverte a concepção do biólogo, pois ele acreditava que apenas organismos visíveis tinham impacto significativo e relevante em diversos ecossistemas.
- (C) o biólogo enfatizou que apenas os fungos perceptíveis e conhecidos desempenham funções vitais nos ecossistemas, e menciona os organismos criptogâmicos para corroborar e reforçar este ponto de vista.
- (D) segundo o biólogo, os fungos escuros são responsáveis por uma pequena fração das funções ecológicas, e por isso são menos importantes do que as espécies previamente conhecidas.
- (E) o biólogo sugeriu que os fungos escuros, assim como outros microrganismos, desempenham um papel importante para a reciclagem de nutrientes e a decomposição da matéria orgânica.

TEXTO PARA AS QUESTÕES 24 E 25

As plantas são frequentemente vistas como organismos simples, estáticos, de comportamento trivial, que interagem com os humanos menos que os animais o fazem. Por isso, chama nossa atenção quando uma planta responde: a dormideira (*Mimosa pudica*) é uma planta com folhas compostas que, quando tocada, fecha os folíolos imediatamente, num movimento reversível que crianças (e alguns adultos) adoram. Mas se trata de uma exceção: como os vegetais parecem passivos, julgamos que a vida de uma planta deve ser monótona.

O crescimento vegetal é muito diferente do nosso: plantas produzem órgãos pós-embrionários ao longo de toda a vida. Nós, humanos, somos muito parecidos desde o útero até a vida adulta –em essência, temos os mesmos órgãos ao nascer, só que eles crescem. Praticamente não temos capacidade de regeneração: embora lesões menores cicatrizem, a perda de órgãos é irreversível.

Já nas plantas, o embrião vegetal raramente tem semelhança com o indivíduo adulto. E, após a germinação, raízes, caules e folhas se desenvolvem continuamente. Mais: é fácil explorar essa capacidade para produzir clones vegetais — as mudas —, pois basta arrancar um ramo e podemos gerar um novo indivíduo geneticamente idêntico, um irmão gêmeo.

Como crescem continuamente, as plantas devem modular esse crescimento para o ambiente em que estão, e o fazem de diversas maneiras, a começar na germinação: independentemente de como as sementes forem postas no solo, o caule crescerá para cima e as raízes para baixo, pois as plantas percebem a direção da gravidade da Terra e usam a informação para orientar o eixo de crescimento.

Então, plantas são capazes de sentir? Embora seja um tema um tanto controverso, não deveria surpreender que um organismo resultante de seleção natural conseguisse diferenciar estímulos ambientais positivos e negativos para ter vantagem evolutiva.

A maneira como vemos a vida das plantas deriva da falta de conhecimento. E ainda sabemos muito pouco: há algum tempo, afirmar que plantas eram inteligentes era considerado pouco científico. Hoje, embora não seja um consenso, há quem afirme que sim: se elas são capazes de coletar informações do ambiente, responder de forma adequada para aumentar as chances de sobrevivência, e até responder melhor quando enfrentam a mesma situação (uma forma de memória), trata-se de um organismo inteligente.

https://www1.folha.uol.com.br/blogs/ciencia-fundamental/2024/06/a-estranha-vida-das-plantas.shtml -28.jun.2024. Adaptado.

24

No texto, constitui argumento a respeito da controvérsia sobre a capacidade das plantas de sentir e ser consideradas inteligentes à

- (A) produção de órgãos pós-embrionários.
- (B) propriedade de responder a estímulos ambientais.
- (C) similaridade entre embrião vegetal e indivíduo adulto.
- (D) existência de um sistema nervoso central.
- (E) faculdade dos humanos de regenerar partes perdidas.

25

No texto, um efeito metafórico do termo "memória" referese à capacidade das plantas de

- (A) direcionar seu crescimento para a luz, maximizando a captação de energia solar essencial para sua sobrevivência e desenvolvimento.
- (B) gerar frutos, uma etapa crucial para a reprodução e a perpetuação da espécie, assegurando a continuidade do seu ciclo de vida.
- (C) produzir flores, que são estruturas complexas e vitais para a polinização e formação de sementes nos vegetais.
- (D) realizar fotossíntese, convertendo luz solar em potência química, indispensável para sua nutrição e crescimento.
- (E) responder melhor quando enfrentam a mesma situação, demonstrando um tipo de aprendizagem ou adaptação.

TEXTO PARA A QUESTÃO 26

No Laboratório de Ecologia Vegetal, Evolução e Síntese da UFRN, o grupo de pesquisa da bióloga Vanessa Staggemeier coordena encontros de *preprint clubs*.

Nesses encontros, a pesquisadora e seus dez alunos de graduação e pós-graduação discutem trabalhos científicos disponibilizados em repositório de *preprints* - estudos publicados sem antes terem passado pelo processo formal de revisão por pares.

O Instituto Serrapilheira foi um dos financiadores da pesquisa de Staggemeier com os *preprint clubs*. A ideia era entender o quão receptivos para essas práticas estariam os cientistas e ao mesmo tempo estimular uma cultura de ciência aberta e de revisão coletiva em repositórios públicos de *preprints*. Por ser uma instituição privada, sem fins lucrativos, o Serrapilheira tem atuado como uma espécie de laboratório de experimentação de práticas pouco usuais na ciência, que as agências públicas não podem se arriscar a abraçar logo de cara.

Após a discussão sobre o *preprint* escolhido, os grupos deveriam postar um comentário, positivo ou negativo, em uma plataforma própria para isso.

O *preprint club* de Staggemeier estranhou uma abordagem no *preprint* em debate, sobre a biodiversidade de um bioma brasileiro.

"Achei que tinha um erro metodológico, porque outros trabalhos de modelagem de nicho ecológico para esse bioma encontraram resultados bem diferentes. Suspeitamos que as palavras-chave utilizadas na revisão bibliográfica não foram amplas o suficiente", Staggemeier conta.

O grupo preparou o comentário para postar no repositório de *preprint* onde o estudo fora publicado. Nesse meio tempo, porém, o artigo passou pelo crivo da tradicional revisão por pares e saiu num periódico da área de mudanças climáticas. A publicação não demoveu o grupo, que ainda assim decidiu registrar o comentário. O autor não respondeu.

A detecção de um erro em potencial no *preprint* não significa que aquele fosse um trabalho ruim. Esse é o processo natural da ciência: o caminho percorrido por uma investigação científica é permeado de equívocos, acertos, dúvidas e questionamentos que sempre vão lapidando a pesquisa em direção à sua melhor versão.

Por isso, quanto mais gente trabalhando de forma coletiva nesse processo, melhor tende a ser a ciência. Também é por isso que os *preprints* são tidos como uma das principais formas de alcançar essa ciência colaborativa e aberta.

https://www1.folha.uol.com.br/blogs/ciencia-fundamental/2024/06/o-queacontece-se-dispensamos-a-revisao-por-pares.shtml. 13/06/2024.

26

Na frase "A detecção de um erro em potencial no *preprint* não significa que aquele fosse um trabalho ruim." (8º parágrafo), o impacto da escolha do termo "detecção" é

- (A) enfocar o processo de refutação de determinada teoria.
- (B) identificar a negação de uma editora em considerar equívocos científicos.
- (C) apontar a resolução de uma dificuldade subestimada.
- (D) suavizar alguma crítica ao destacar a natureza potencial do erro.
- (E) enfatizar a confiança inabalável na metodologia utilizada.

TEXTO PARA AS QUESTÕES 27 E 28

O laboratório da *Terray Therapeutics* é uma sinfonia de automação miniaturizada. Robôs zunem transportando minúsculos tubos de fluidos para suas estações. Cientistas com jalecos azuis, luvas esterilizadas e óculos de proteção monitoram as máquinas.

Mas a verdadeira ação está acontecendo em nanoescala: proteínas em solução se combinam com moléculas químicas mantidas em poços minúsculos em chips de silício personalizados que são como forminhas de brigadeiro microscópicas. Cada interação é registrada, milhões e milhões por dia, gerando 50 terabytes de dados brutos diariamente - o equivalente a mais de 12 mil filmes.

O laboratório, com cerca de dois terços do tamanho de um campo de futebol, é uma fábrica de dados para a descoberta e o desenvolvimento de medicamentos assistidos por inteligência artificial (IA) em Monrovia, Califórnia.

As empresas estão aproveitando a nova tecnologia para tentar refazer a descoberta de medicamentos. Elas estão mudando o campo de um trabalho artesanal meticuloso para uma precisão mais automatizada, uma mudança alimentada pela IA que aprende e fica mais inteligente.

A IA para a descoberta de medicamentos se baseia em dados. E são dados muito especializados - informações moleculares, estruturas de proteínas e medições de interações bioquímicas. A IA aprende com padrões nos dados para sugerir possíveis candidatos a medicamentos úteis, como se estivesse combinando chaves químicas com as fechaduras de proteínas certas.

Como a IA para o desenvolvimento de medicamentos é alimentada por dados científicos precisos, as "alucinações"

tóxicas são muito menos prováveis do que com *chatbots* mais amplamente treinados.

Empresas como a *Terray* estão construindo grandes laboratórios de alta tecnologia para gerar as informações que ajudam a treinar a IA, o que permite a experimentação rápida e a capacidade de identificar padrões e fazer previsões sobre o que pode funcionar.

A IA generativa pode então projetar digitalmente uma molécula de medicamento. Esse projeto é traduzido, em um laboratório automatizado de alta velocidade, para uma molécula física e testado quanto à sua interação com uma proteína-alvo. Os resultados - positivos ou negativos - são registrados e alimentam o *software* de IA para aprimorar seu próximo projeto, acelerando o processo geral.

https://www.estadao.com.br/link/cultura-digital/como-a-ia-estarevolucionando-o-desenvolvimento-de-medicamentos/. 19/06/2024. Adaptado.

27

No trecho do texto "O laboratório da *Terray Therapeutics* é uma sinfonia de automação miniaturizada. Robôs zunem transportando minúsculos tubos de fluidos para suas estações." (1º parágrafo), o pronome "suas" refere-se a

- (A) sinfonia.
- (B) robôs.
- (C) automação miniaturizada.
- (D) tubos de fluidos.
- (E) estações.

28

No trecho "a verdadeira ação está acontecendo em nanoescala" (2º parágrafo), o emprego do adjetivo "verdadeira" tem efeito de sentido de

- (A) destacar que o processo crucial ocorre em um nível invisível a olho nu.
- (B) sugerir que o trabalho dos cientistas é secundário em comparação com a automação.
- (C) indicar que a ação visível dos robôs é mais importante em relação ao que ocorre em nível molecular.
- (D) mostrar que o tamanho do laboratório é irrelevante para o processo de descoberta de medicamentos.
- (E) afirmar que a interação entre as moléculas químicas é mais significativa do que o transporte dos fluidos.

TEXTO PARA AS QUESTÕES 29 E 30

Os professores de ciências, no ensino fundamental e no ensino médio, em geral acreditam que a melhoria do ensino passa pela introdução de aulas práticas no currículo. Curiosamente, várias das escolas dispõem de alguns equipamentos e laboratórios que, por várias razões, nunca são utilizados.

Para um país onde uma fração considerável dos estudantes não teve a oportunidade de entrar em um laboratório de ciências, pode parecer um contrassenso questionar a validade de aulas práticas, especialmente porque na maioria das escolas elas simplesmente não existem. De fato, há uma corrente de opinião que defende a ideia de que muitos dos problemas do ensino de ciências se devem à ausência de aulas de laboratório. Para os que compartilham desta opinião, uma condição necessária para a melhoria da qualidade de ensino consiste em equipar as escolas com laboratórios e treinar os professores para utilizá-los. Entretanto, mesmo nos países onde a tradição de ensino experimental está bem sedimentada, a função que o laboratório pode, e deve ter, bem como a sua eficácia em promover as aprendizagens desejadas, têm sido objeto de questionamentos.

No denominado laboratório tradicional, o aluno realiza atividades práticas, envolvendo observações e medidas, acerca de fenômenos previamente determinados pelo professor. O objetivo da atividade prática pode ser o de testar uma lei científica, ilustrar ideias e conceitos aprendidos nas 'aulas teóricas', descobrir ou formular uma lei acerca de um fenômeno específico.

As principais críticas que se fazem a estas atividades práticas é que elas não são efetivamente relacionadas aos conceitos físicos; que muitas delas não são relevantes do ponto de vista dos estudantes, já que tanto as questões como o procedimento para resolvê-las estão previamente determinados; que as operações de montagem dos equipamentos, as atividades de coleta de dados e os cálculos para obter respostas esperadas consomem muito ou todo o tempo disponível. Em geral, os alunos percebem as atividades práticas como eventos isolados onde o objetivo é chegar à 'resposta certa'.

Alguns críticos mais veementes argumentam que os laboratórios de ciências são caros, que o uso de equipamentos só encontrados nos laboratórios torna o ensino distante da experiência fora de sala de aula do aluno e que a própria complexidade das montagens constitui uma forte barreira para que o estudante compreenda as ideias e conceitos envolvidos nas atividades práticas.

Borges, A. T. Cad. Bras. Ens. Fís., v. 19, n.3: p.291-313, dez. 2002. Adaptado.

29

Considerando o trecho "Os professores de ciências, no ensino fundamental e no ensino médio, em geral acreditam que a melhoria do ensino passa pela introdução de aulas práticas no currículo" (1º parágrafo), assinale a alternativa que substitui corretamente "melhoria" por um verbo, "práticas" por um substantivo e "currículo" por um adjetivo.

- (A) Os professores de ciências, no ensino fundamental e no ensino médio, em geral acreditam que melhorar o ensino passa pela introdução de aulas práticas no currículo.
- (B) Os professores de ciências, no ensino fundamental e no ensino médio, em geral acreditam que o melhor ensino passa pela introdução de prática nos currículos.
- (C) Os professores de ciências, no ensino fundamental e no ensino médio, em geral acreditam que a melhoria no ensino passa pela introdução de prática curricular.
- (D) Os professores de ciências, no ensino fundamental e no ensino médio, em geral acreditam que melhorando o ensino passa-se pela introdução de prática no currículo.
- (E) Os professores de ciências, no ensino fundamental e no ensino médio, em geral acreditam que melhorar o ensino passa pela introdução de práticas curriculares.

30

Considerado o contexto, o termo "função", no trecho "a função que o laboratório pode, e deve ter" (2º parágrafo), faz referência

- (A) ao grau de obsolescência de equipamentos básicos.
- (B) ao desconhecimento de certas operações ou atividades.
- (C) à complexidade das montagens dos instrumentos.
- (D) à relevância dos laboratórios no ensino de ciências.
- (E) à necessidade de compreensão de conceitos complexos.

31

Uma apresentação no *PowerPoint* do pacote *Office 365* está sendo desenvolvida para uma reunião importante. Além de incluir textos e imagens, é necessário adicionar elementos que aumentem a interatividade e o impacto visual da sua apresentação, como:

- 1. Ajustar o *layout*, o estilo e a aparência geral dos *slides*, garantindo que sua apresentação tenha um aspecto profissional e coeso;
- 2. Adicionar elementos gráficos como organograma, matriz de grade, pirâmide invertida;
- 3. Adicionar efeitos visuais ao passar de um *slide* para o próximo durante uma apresentação.

Qual combinação de recursos do *PowerPoint* é apropriada para os objetivos apresentados e permitem alcançar esses objetivos na sequência informada, respectivamente?

- (A) Ferramenta de *Design*, *WordArt*, Transições.
- (B) Slide Mestre, WordArt, Animações.
- (C) Ferramentas de Design, SmartArt, Transições.
- (D) Ferramenta de *Design*, Revisão de Texto, Animações.
- (E) Slide Mestre, Inserir Vídeo, Transições.

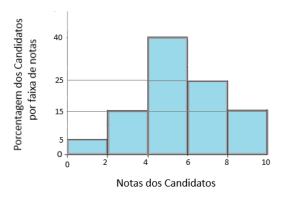
É necessário modificar em um documento longo todas as ocorrências de uma palavra específica por outra utilizando o aplicativo *Microsoft Word*. Por exemplo: modificar todos os usos da palavra "antigo" por "novo" ao longo de um relatório de 20 páginas.

Qual dos seguintes recursos do *Word*, do pacote *Office 365*, é mais utilizado para realizar essa ação em um documento de forma rápida e eficiente?

- (A) Marcadores e Numeração.
- (B) Formatação Condicional.
- (C) Localizar e Substituir.
- (D) Controle de Alterações.
- (E) Estilos de Texto.

33

Trabalhar com grandes quantidades de dados no *Excel* do pacote *Office 365* é uma tarefa facilitada por uma série de recursos poderosos e intuitivos. O *Excel* oferece recursos como Filtros e Classificação, que permitem separar rapidamente informações específicas e organizar os dados de maneira lógica. Em relação a esses recursos, imagine que você está organizando uma planilha no Excel do pacote *Office 365* que contém dados de vendas de diferentes produtos ao longo do ano. Para facilitar a análise dos dados, você deseja:


- 1. Exibir apenas as vendas de um determinado mês;
- 2. Ordenar os produtos por ordem alfabética;
- 3.Ordenar os valores de vendas do maior para o menor;
- 4.Completar automaticamente os meses do ano em uma coluna.

Quais são os quatro recursos que devem ser utilizados para cada uma das tarefas apresentadas na sequência informada, respectivamente?

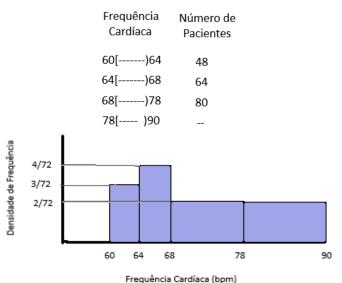
- (A) Classificação de A a Z, Filtro, Preenchimento Automático, Classificação Personalizada.
- (B) Preenchimento Automático, Classificação de A a Z, Filtro, Classificação Personalizada.
- (C) Filtro, Classificação Personalizada, Classificação de A a Z, Preenchimento Automático.
- (D) Classificação Personalizada, Filtro, Preenchimento Automático, Classificação de A a Z.
- (E) Filtro, Classificação de A a Z, Classificação Personalizada, Preenchimento Automático.

TEXTO PARA AS QUESTÕES 34 E 35

O gráfico de barras a seguir mostra como estão distribuídas as notas dos 1000 candidatos em um concurso para provimento de um cargo de técnico do judiciário.

34

Supondo que as notas estejam distribuídas uniformemente dentro de cada intervalo, a melhor aproximação para a nota média desses candidatos é


- (A) 5,0
- (B) 5,8
- (C) 5,4
- (D) 5,1
- (E) 5,6

35

Novamente supondo que as notas estejam distribuídas uniformemente dentro de cada intervalo, a melhor aproximação para o primeiro quartil das notas é:

- (A) 4,20
- (B) 4,25
- (C) 4,30
- (D) 4,35
- (E) 4,40

Um médico agrupou em quatro classes a frequência cardíaca de seus pacientes durante a última consulta. Ao salvar o arquivo ocorreu algum problema e o número de pacientes de uma das faixas foi apagado. O médico havia feito o histograma das frequências cardíacas, que está na figura a seguir. Qual é o valor que foi apagado?

- (A) 84
- (B) 88
- (C)92
- (D) 96
- (E) 100

37

Considere a tabela periódica representada a seguir:

	1																	18
1	Н	2											13	14	15	16	17	Не
2	Li	Be											В	С	N	0	F	Ne
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	Αℓ	Si	Р	S	Cl	Ar
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	-1	Xe
6	Cs	Ba	*	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	Tℓ	Pb	Bi	Po	At	Rn
7	Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fℓ	Мс	Lv	Ts	Og
			*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Compostos de estrutura (CH₃)₃X, com X podendo variar entre os 5 primeiros elementos da família 15 da tabela periódica, possuem algumas propriedades químicas diferentes. Com base nas propriedades periódicas dos átomos dessa família, é possível afirmar que:

- (A) A variação da massa molar aumenta conforme diminui o período de X.
- (B) A eletronegatividade terá seu maior valor para X = N e X = Bi e seu menor valor para X = P.
- (C) O ponto de ebulição diminui conforme aumenta o período de X.
- (D) O número de elétrons da camada de valência da molécula não varia quando se varia X.
- (E) O raio molecular será maior para X = N e X = P e menor para X = Sb e X = Bi.

38

Leia o texto a seguir:

"A principal rota para a produção de hidrogênio é a reforma a vapor do gás natural, cujo principal constituinte é o metano. Nesse processo, o metano é submetido a altas temperaturas na presença de O_2 e transformado em H_2 e CO_2 . Na Europa, o hidrogênio gerado __(I)_ classificado como sustentável, pois para cada quilo de hidrogênio produzido, são emitidos cerca de __(II)_ kg de CO_2 .

Na Europa, para que o hidrogênio receba o rótulo de baixa emissão, é preciso que durante seu processo de geração sejam lançados na atmosfera, no máximo, 3,8 kg de CO₂ por kg de H₂ produzido."

Fonte: https://revistapesquisa.fapesp.br/na-rota-do-hidrogeniosustentavel/, novembro/2023. ADAPTADO.

Os espaços marcados com (I) e (II) podem ser adequadamente preenchidos, respectivamente, com:

- (A) não é; 20
- (B) não é; 11
- (C) pode ser; 11
- (D) pode ser; 20
- (E) pode ser; 3,8

Note e adote: MM(H) = 1,0 g/mol MM(C) = 12,0 g/mol MM(O) = 16,0 g/mol

39

O meio de cultura Guillard F/2, muito usado para cultivo de microrganismos marinhos, é preparado a partir da água do mar, sendo adicionados diversos sais minerais e uma solução de vitaminas preparada conforme instruções a seguir:

• Diluir em frações de 200 mL de água destilada cada vitamina separadamente:

Vitamina	Massa a ser diluída			
Tiamina (B1)	100 mg			
Biotina (B7)	0,5 mg			
Cianocobalamina (B12)	0,05 mg			

- Juntar as soluções em um balão volumétrico e ajustar o volume para 1,0 L, filtrando para a esterilização do meio.
- Para a solução final, adicionar 1,0 mL da solução estoque de vitaminas, além das soluções de sais minerais, e completar para 1,0 L de água do mar.

A concentração final de vitamina B1, B7 e B12 no meio de cultura final, em mg. L^{-1} , é, respectivamente,

- (A) 1.0×10^{-1} ; 5.0×10^{-4} ; 5.0×10^{-5} .
- (B) 1.0×10^{-1} ; 1.0×10^{-4} ; 1.0×10^{-5} .
- (C) $1,0\times10^{-2}$; $5,0\times10^{-4}$; $1,0\times10^{-5}$.
- (D) 1.0×10^{-2} ; 5.0×10^{-5} ; 5.0×10^{-5} .
- (E) 2,0×10⁻²; 1,0×10⁻⁴; 1,0×10⁻⁶.

Um dos parâmetros de qualidade do vinho é sua acidez total. De forma geral, essa acidez pode ser relacionada ao teor de ácido tartárico, um diácido que é o principal responsável pela acidez presente no vinho. A legislação brasileira estabelece como padrão de qualidade para vinhos finos no Brasil uma acidez total equivalente entre 3,0 e 9,75 g.L⁻¹ de ácido tartárico. Uma amostra de 20 mL de um vinho comercial foi submetida a uma titulação potenciométrica com solução de NaOH 0,1 mol.L⁻¹. O volume de base utilizado para sua neutralização foi de 16,00 mL. Considerando que toda a acidez do vinho veio do ácido tartárico presente, essa amostra se enquadra

- (A) abaixo do permitido pela legislação, com acidez de 1,2 g.L-1.
- (B) dentro do permitido pela legislação, com acidez de 3,5 g.L⁻¹.
- (C) dentro do permitido pela legislação, com acidez de 6,0 g.L⁻¹
- (D) acima do permitido pela legislação, com acidez de 9,8 g.L⁻¹.
- (E) acima do permitido pela legislação, com acidez de 12,0 g.L⁻¹.

Note e adote:

Estrutura do ácido tartárico:

Massa molecular: 150,0 g.mol⁻¹

OH O
OH
OH
OH

41

Um bloco de 2,0 kg desliza sobre uma superfície horizontal com atrito. O coeficiente de atrito cinético entre o bloco e a superfície é de 0,10. Qual é a força de atrito que atua sobre o bloco?

- (A) 0,2 N
- (B) 1,0 N
- (C) 1,5 N
- (D) 2,0 N
- (E) 3,0 N

Note e adote: Assuma g = 10 m/s².

42

Um objeto que possui volume de 0,100 m³ e densidade de 0,8 g/cm³ é completamente submerso em um líquido de densidade 1000 kg/m³. Qual é o empuxo que atua sobre o objeto?

- (A) 196 N
- (B) 784 N
- (C) 800 N
- (D) 980 N
- (E) 1200 N

Note e adote: Assuma g = 10 m/s^2 .

43

Uma onda sonora tem período de T=2,27ms e comprimento de onda de $\lambda=0,750~m$. Qual é a velocidade de propagação desta onda sonora?

- (A) 293 m/s
- (B) 330 m/s
- (C) 440 m/s
- (D) 587 m/s
- (E) 660 m/s

44

Um gás ideal realiza um ciclo termodinâmico. Durante uma expansão isotérmica, o gás realiza 200 J de trabalho. Se o ciclo tem uma eficiência de 25%, o calor rejeitado pelo sistema, é aproximadamente de:

- (A) 60 J
- (B) 150 J
- (C) 200 J
- (D) 350 J
- (E) 600 J

45

Em laboratórios, as condições de higiene e limpeza devem ser rigorosas para evitar possíveis fontes de contaminações que constituam risco em potencial no ambiente de trabalho. Nesse contexto, as técnicas de desinfecção, esterilização e sanitização são diversas a devem estar alinhadas aos protocolos de Biossegurança vigentes (Organização Mundial de Saúde, 2004). Em relação ao tema, assinale a alternativa correta.

- (A) A desinfecção implica no processo que objetiva eliminar todos os microrganismos, exceto os esporos, enquanto a esterilização é o processo que assegura apenas a eliminação de bactérias.
- (B) A utilização do álcool a 90% (etanol ou isopropílico) é indicada para desinfecção da pele, bancada e equipamentos.
- (C) A vapor saturado sob pressão (autoclave) é considerado o método mais eficaz e seguro de esterilização de materiais de laboratório.
- (D) O óxido de etileno é um gás altamente reativo que degrada estruturas celulares de microrganismos, porém é exclusivamente destinado a esterilização de vidrarias.
- (E) A formalização ou fumigação é uma desinfecção de ambiente realizada por sublimação de formaldeído, com a vantagem que o processo pode ser executado sem a necessidade de suspensão da rotina de trabalho no ambiente.

As Cabines de Segurança Biológica foram desenvolvidas como forma de contenção primária no trabalho com agentes de risco biológico e substâncias químicas, minimizando a exposição do operador, do produto e do ambiente. Considerando esses equipamentos, assinale a alternativa correta.

- (A) São classificadas de acordo com o tamanho, preço e ano de desenvolvimento e fabricação.
- (B) Nas de Classe II, o fluxo de ar esterilizado por um sistema de filtro HEPA (*High Efficiency Particulate Arrestance*) circula continuamente sobre a superfície de trabalho.
- (C) Todas as Classes de equipamentos podem ser utilizadas na manipulação de produtos químicos tóxicos ou voláteis.
- (D) É obrigatório que todos os modelos sejam equipados com lâmpadas ultravioleta, que devem ser mantidas ligadas durante todo período de uso do equipamento.
- (E) Os filtros HEPA removem mais de 99.9% das partículas suspensas no ar, entretanto só estão presentes nas cabines das Classes II e III.

47

A luva de látex surgiu no final do século XIX nos Estados Unidos, quando o cirurgião William Halsted solicitou à *Goodyear Rubber Company*, que desenvolvesse uma luva de borracha fina para proteção de sua auxiliar Caroline Hampton contra dermatite causada por produtos antissépticos da época. Desde então, as luvas e demais EPIs (Equipamentos de Proteção Individual) se tornaram obrigatórios nas atividades clínicas de pesquisa. Em relação a essa temática assinale a alternativa correta.

- (A) As luvas devem ser utilizadas somente quando há contato com microrganismos patogênicos, nos demais casos, lavar as mãos após os procedimentos é suficiente para eliminar qualquer risco de contaminação.
- (B) O jaleco ou avental é usado para proteção das roupas e o corpo do trabalhador contra borrifos químicos ou biológicos e é recomendado que não sejam confeccionados com tecidos de algodão, dado ao maior risco de propagação de fogo.
- (C) O uso de calçados fechados somente é exigido em laboratórios nos quais sejam manipulados produtos químicos de alta toxicidade ou radioativos.
- (D) As luvas de látex são indicadas para manipulação de material biológico, materiais em altas ou baixas temperaturas e o manuseio de substâncias químicas corrosivas.
- (E) É de reponsabilidade do empregador fornecer gratuitamente e exigir uso dos EPIs indicados para as atividades previstas na função.

48

Observe a imagem a seguir:

O jargão publicar ou perecer (publish or perish) representa a crescente pressão por aumento no número de publicações imposta aos cientistas. Embora a divulgação científica seja fundamental para o avanço do conhecimento, as métricas baseadas na avaliação quantitativa têm sido vistas como fator associado ao aumento de casos de práticas de má conduta científica. Sobre esse tema, assinale a alternativa correta.

- (A) As colaborações científicas são fortemente estimuladas como forma de alavancar o conhecimento e impedem ou dificultam a fabricação e falsificação de dados.
- (B) A falsificação de dados consiste em alterar os processos e dados da pesquisa, sendo considerada delito grave, enquanto a omissão de dados é aceita como parte do delineamento da pesquisa.
- (C) Erros honestos correspondem a equívocos não intencionais nos métodos ou na interpretação dos dados obtidos na pesquisa e devem ser corrigidos quando identificados.
- (D) O número de artigos retratados devido a evidências de má conduta científica tem reduzido expressivamente nas últimas décadas graças ao desenvolvimento de ferramentas tecnológicas.
- (E) Atualmente as políticas de avalição da produção científica na USP são pautadas apenas no número de publicações, como proposto em Guias de Boas Práticas Científicas.

Todos os envolvidos na atividade científica, além dos preceitos éticos a que os indivíduos estão submetidos, devem seguir normas específicas inerentes a construção da ciência. Toda transgressão a esses princípios, intencional ou por negligência pode ser identificada com má conduta científica. Como forma de coibir essas práticas, regulamentos, códigos de conduta e políticas institucionais têm sido propostos. Dentre as alternativas a seguir, assinale aquela que contempla procedimento inadequado em casos de suspeitas fundadas de má conduta científica.

- (A) Em caso de erros ou equívocos em publicações, os autores e editores devem realizar as correções ou retratações necessárias de forma clara, objetiva e pública, nos meios pertinentes.
- (B) Comissões designadas pela instituição devem receber as alegações de má conduta científica e avaliar seu grau de fidedignidade.
- (C) Após denúncia de má conduta científica, deve ser instaurado um processo formal de investigação que determinará o grau de gravidade dessas más condutas e o grau de responsabilidade atribuído aos acusados.
- (D) Conduzir o processo de investigação de suspeitas de más condutas científicas paralelamente no âmbito da universidade e na justiça comum, como forma de acelerar os procedimentos de punição.
- (E) Conduzir o processo formal de investigação com maior grau de confidencialidade compatível e dar ao acusado a presunção de inocência.

50

Qual das circunstâncias a seguir corresponde a uma conduta prevista e aceita nos Códigos de Boas Práticas Científicas?

- (A) Submeter um trabalho a mais de um periódico simultaneamente.
- (B) Suprimir autores de um trabalho por conflito de interesse como forma de assegurar o financiamento ou publicação de um trabalho.
- (C) Após a publicação dos resultados, disponibilizar os dados para torná-los verificáveis por outros pesquisadores.
- (D) Submeter projeto de pesquisa aos órgãos de fomento e instâncias regulatórias sem a anuência de todos envolvidos na pesquisa, visto que o trabalho ainda não está em andamento.
- (E) Revisar trabalho de outros autores quando há relação direta de cooperação ou competitividade.

51

A técnica de microscopia eletrônica de varredura permite o imageamento da geometria da superfície de materiais, com alta resolução, bem como a determinação da composição química dos materiais analisados. Para o imageamento da superfície dos materiais, a técnica utiliza a detecção de elétrons

- (A) secundários de baixa energia, emitidos após excitação ionizante através do feixe eletrônico primário.
- (B) retroespalhados de baixa energia, provenientes do feixe eletrônico primário.
- (C) retroespalhados de alta energia, provenientes do feixe eletrônico primário.
- (D) secundários de alta energia, emitidos após excitação ionizante através do feixe eletrônico primário.
- (E) de alta energia, provenientes do decaimento radiativo do núcleo atingido pelo feixe eletrônico primário.

52

A energia de transição eletrônica entre dois orbitais pode ser estimado pelo modelo de Bohr:

$$E \cong 13.6 \times \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right) (Z - b)^2 eV$$

Onde Z representa o número atômico do material, e b a carga efetiva de blindagem do núcleo, que pode ser compreendido como o número de elétrons da camada inferior menos 1. Espera-se, portanto, que as transição K α do elemento $^{47}_{22}Ti$ ocorra com energia aproximada de:

- (A) 0,7 keV
- (B) 1,8 keV
- (C) 3,7 keV
- (D) 4,5 keV
- (E) 6,2 keV

53

Um feixe de raios X, de comprimento de onda λ =1,54 Å, incide sobre um cristal com um ângulo de incidência de 15°, para o qual ocorre difração em primeira ordem. Utilizando a aproximação $\sin(x) \sim x$ para ângulos pequenos, pode-se determinar o espaçamento entre planos cristalinos deste cristal em, aproximadamente:

- (A) 1,9 nm
- (B) 3,7 nm
- (C) 7,4 nm
- (D) 14,8 nm
- (E) 29,6 nm

Durante o preparo de amostras para análise em microssonda eletrônica, alguns cuidados são essenciais para garantir a qualidade dos resultados. Qual das opções abaixo descreve corretamente um dos passos fundamentais no preparo da amostra?

- (A) A amostra deve ser cortada em uma espessura superior a 1 cm para garantir uma análise detalhada.
- (B) É necessário polir a amostra até que a superfície fique completamente lisa e livre de imperfeições, a fim de minimizar a dispersão dos elétrons.
- (C) A amostra deve ser coberta com filme não condutor de carbono, pois a microssonda eletrônica não consegue compensar essa limitação em materiais condutores automaticamente.
- (D) O recobrimento da amostra com ouro só é necessário quando a análise envolve materiais metálicos.
- (E) Amostras mineralógicas devem ser cortadas com mais precisão, pois deve-se evitar o seu polimento para garantir a estabilidade de suas estruturas cristalinas.

55

Um espectro em raios-X obtido através de microscopia eletrônica para caracterização química de uma amostra mineral, apresenta: i) uma componente contínua de alta intensidade, com quebra (break) em λ =0,2Å, ii) as linhas K α e K β em 10,5 e 11,7 keV, respectivamente e iii) ausência de linha L detectável. A razão para a ausência de linhas L neste experimento é:

- (A) Quebra do espectro contínuo em baixa energia, portanto sem energia suficiente para a excitação de linhas da série L.
- (B) O número atômico do elemento químico ser pequeno, com nenhum elétron na camada M.
- (C) A amostra foi preparada com espessura maior que o ideal, o que promove a autoabsorção de linhas de menor energia, como a série L.
- (D) O fluxo incidente é demasiadamente alto em energias mais altas, causando a ionização do elemento e não permitindo a transição eletrônica característica da série L.
- (E) A amostra foi preparada sem a camada condutora, o que causou a não transmissibilidade de elétrons com energia suficiente para as transições da série de linhas L.

56

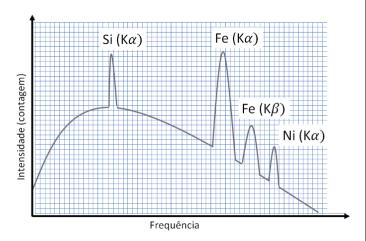
Um feixe eletrônico primário de energia Ep interage com uma amostra produzindo um fluxo de elétrons secundários (ES), um fluxo de elétrons retroespalhados (ERE) e um fluxo de radiação em raios-X (FX) com duas componentes (contínua e linhas características). Com relação à técnica de microscopia eletrônica, podemos afirmar:

- (A) O imageamento com elétrons secundários (ES), que são originados mais próximos à superfície, terá maior resolução pois a dimensão do feixe nesta região é menor.
- (B) O imageamento com radiação em raios-X (FX) terá maior resolução pois o comprimento de onda da radiação é inferior à dimensão do feixe.
- (C) O imageamento com radiação em raios-X (FX) terá maior resolução pois são produzidos na região da superfície da amostra, onde a largura do feixe será menor.
- (D) O imageamento com radiação em raios-X (FX) e de elétrons secundários possuem resoluções semelhantes pois ambos são produzidos na mesma região de interação do feixe primário com a amostra.
- (E) O imageamento com elétrons retroespalhados (ERE), que são originados mais próximos à superfície, terá maior resolução pois a dimensão do feixe nesta região é menor.

57

Um feixe de elétrons acelerados sob tensão de 8 kV incide sobre uma amostra de Níquel, cujas transições $K\alpha$ e $K\beta$ ocorrem em 16,6 nm e 15 nm, respectivamente. O espectro de raios-X produzido por esta interação feixe-amostra será composta de:

- (A) Um contínuo *bremsstrahlung* com corte localizado em torno de 80,0 nm, sobreposto a duas linhas espectrais características $K\alpha$ e $K\beta$.
- (B) Um contínuo *bremsstrahlung* com corte localizado em torno de 8,0 nm, sem linhas espectrais características.
- (C) Um contínuo *bremsstrahlung* com corte localizado em torno de 8,0 nm, sem linhas espectrais características.
- (D) Um contínuo bremsstrahlung com corte localizado em torno de 15,5 nm, sobreposto a um pico de linha característica $K\alpha$.
- (E) Um contínuo *bremsstrahlung* com corte localizado em torno de 15,5 nm, sobreposto a dois picos de linhas características $K\alpha$ e $K\beta$.


Note e adote: $h = 6,63x10^{-34} \text{ J.s}$ $c = 3x10^8 \text{ m/s}$ $e = 1,6x10^{-19}\text{C}$

O uso de microscópios eletrônicos de transmissão (MET) exige a obtenção de um feixe de elétrons altamente focalizado para formar imagens nítidas da amostra. No MET, o foco do feixe:

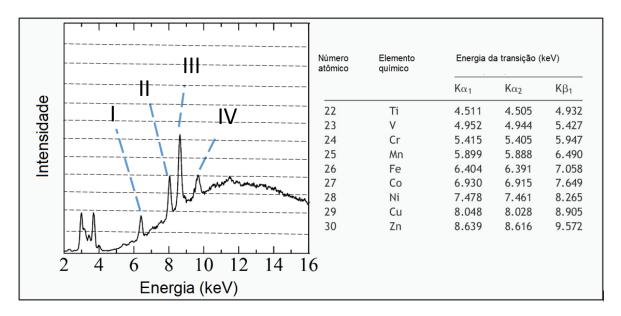
- (A) é ajustado pelo movimento lateral da amostra dentro do feixe de elétrons, similar ao ajuste de posição em microscópios de luz.
- (B) é obtido pelo controle da intensidade do feixe de elétrons, sem a necessidade de mover a amostra ou ajustar as lentes.
- (C) é ajustado pela variação da tensão de aceleração dos elétrons, influenciando diretamente a penetração dos elétrons na amostra.
- (D) é ajustado pela inserção de filtros no caminho do feixe de elétrons, garantindo a seleção de um comprimento de onda específico.
- (E) é obtido pela movimentação da amostra na direção do eixo ótico do feixe, e pelo ajuste da corrente elétrica nas bobinas/lentes eletromagnéticas.

59

O gráfico a seguir ilustra um espectro de raios-X obtido por microssonda eletrônica com dispersão de energia de uma amostra mineral desconhecida. Algumas linhas espectrais estão identificadas.

Com base nos dados, é possível estimar a proporção em massa de Fe:Ni:Si como, aproximadamente:

- (A) 22:1:5
- (B) 22:2:5
- (C) 22:4:5
- (D) 22:5:3
- (E) 22:8:7


60

Durante uma análise com um Microscópio Eletrônico de Varredura (MEV), de diâmetro de feixe (d_{feixe}) de 4 nm, um pesquisador está observando uma amostra de tamanho *L* com uma ampliação de 50.000 vezes. A imagem obtida, de 3cm, está projetada na tela do analisador, de dimensões 10cm x 7cm. Pode-se dizer que os valores de *L*, e da máxima ampliação para que a dimensão da imagem seja igual a, no mínimo 100 x d_{feixe}, são:

- (A) 3000 nm e 250 000, respectivamente.
- (B) 600 nm e 175 000, respectivamente.
- (C) 40 nm e 1 000 000, respectivamente.
- (D) 5 nm e 80 000, respectivamente.
- (E) 1 mm e 500 000, respectivamente.

QUESTÃO DISSERTATIVA

A espectroscopia de raios-X com dispersão de energia (EDS) é uma técnica essencial para a identificação de elementos químicos em amostras minerais. A figura a seguir apresenta um espectro típico de raios-X obtido por EDS, onde as linhas espectrais K e L de diferentes elementos químicos estão sobrepostas a um contínuo dominado por radiação *bremsstrahlung*. A tabela adjacente serve de referência para a identificação das linhas características.

Com base nestas informações, responda o que se pede nos itens a seguir:

- a) Explique como o preparo inadequado da amostra pode afetar a qualidade e a precisão dos resultados obtidos na análise por EDS, especificamente em relação à morfologia da superfície, contaminação de superfície e à condutividade da amostra.
- b) Sabendo que as linhas K e L correspondem à ionização de diferentes camadas eletrônicas dos átomos, descreva o processo pelo qual essas linhas espectrais são geradas e explique como é possível identificar os elementos químicos presentes na amostra a partir de suas linhas características.
- c) Identifique quais elementos químicos, e a transição característica, responsáveis pelas linhas I, II, III e IV, indicadas na figura.
- d) Considerando que a intensidade das linhas espectrais está relacionada com a concentração dos elementos na amostra, descreva uma forma de se calcular, a partir da figura, a intensidade total das linhas emitidas e estime a proporção de massa entre os elementos produtores das linhas I e III.

Instruções:

- As respostas deverão ser redigidas de acordo com a norma padrão da língua portuguesa.
- Escreva com letra legível e não ultrapasse o espaço de linhas da folha de respostas.
- Receberão nota zero textos que desrespeitarem os direitos humanos e textos que permitirem, por qualquer modo, a identificação do candidato(a).

RASCUNHO

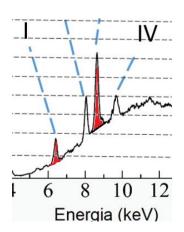
NÃO SERÁ CONSIDERADO NA CORREÇÃO

Universidade de São Paulo Brasil

CONCURSO ESPECIALISTA EM LABORATÓRIO - USP 2024

ESPECIALIDADE: ANÁLISE MINERAL COM MICROSSONDA ELETRÔNICA – EDITAL RH № 087/2024

PROVA EAM							
1	D		31	С			
2	Α		32	С			
3	С		33	Ε			
4	С		34	Е			
3 4 5 6	В		35	В			
6	Α		36	D			
7 8	Α		37	D B			
	С		38				
9	D		39	A C			
10	A C B A C D E B A D C B A C C D E E B A D C E B A		40 41				
11	В		41	D D			
12	Α		42	D			
13	D		43	В			
14	С		44	Ε			
15	В		44 45 46	E C B			
16	Α						
17	Ε		47	Ε			
18	C D A C B E		48	С			
19	D		49 50	D			
20	Α		50	С			
21	С		51	Α			
22	В		52	C A D			
23	Е		53	Ε			
24	В		54	В			
25	E		54 55 56	С			
26	D		56	C A D			
27	В		57	D			
28 29	Α		58	Е			
	D B A		59	С			
30	D		60	В			



CONCURSO ESPECIALISTA EM LABORATÓRIO DRH USP ESPECIALIDADE: ANÁLISE MINERAL COM MICROSSONDA ELETRÔNICA EDITAL RH Nº 087/2024

RESPOSTA ESPERADA E CRITÉRIOS DE CORREÇÃO

- a) O preparo da amostra deve ser atento aos objetivos da medição e do uso da amostra. Amostras que seguirão para utilização posterior devem ser tratadas com cuidado especial, e deve-se evitar recobrimento com camadas metálicas e usos de abrasivos químicos. Para os casos de amostras não reutilizadas, com o fim puramente de identificação de composição química e estrutura, o corte deve ser fino, com polimento da camada de ataque, e tratamento de material condutor (coating) que permita maior qualidade de imageamento e maior número de elétrons secundários. No caso de materiais sensíveis a altas temperaturas, deve-se evitar o coating de carbono. O polimento e o tratamento abrasivo químico garantem a remoção de camadas de impurezas que podem produzir linhas espectrais espúrias. O polimento garante, também, a redução da difusão do feixe de elétrons e o retroespalhamento em direções que interfiram na intensidade final do sinal observado. (2 pontos)
- O feixe de elétron incidente, quando possui energia suficiente, pode penetrar na eletrosfera dos átomos da amostra e produzir a remoção de elétrons de camadas mais internas, como as camadas K e L. Nestes casos, um elétron das camadas superiores irá perder energia para reocupar o espaço possível na camada inferior. As transições K são aquelas que promovem a ocupação de vacância na camada K, enquanto que as transições L são as de promoção da reocupação da vacância eletrônica da camada L. Essas energias estão associadas às energias dos orbitais inicial e final da transição eletrônica, que por sua vez dependem do potencial coulombiano do núcleo, portanto do número atômico Z. Assim, as linhas de transição, como as K e L, possuem energias particulares, permitindo assim a identificação do elemento químico. As transições K e L da maioria dos elementos químicos (exceto pelos de menor número atômico) possuem energias equivalentes à fótons na faixa de raios-X e, por isso, linhas espectrais em raios-X podem ser utilizadas na caracterização química de amostras, de acordo com a lei empírica de Moseley, e a posterior teoria de Bohr. (2 pontos)
- c) Comparando as linhas do gráfico com os valores da tabela, identificamos em 6,4 keV (linha I) a linha Ka do Fe. Em torno de 8keV poderíamos ter a linha Kb do Ni, mas sua contrapartida Ka em 7,47 é invisível (e deveria ser mais intensa), logo a linha em 8keV (linha II) só poderia ser a Ka do cobre (Cu). A linha III poderia ser a linha Kb do Cu, mas está demasiadamente intensa, logo percebe-se um blend de linhas com a Ka do Zn dominante -, que por sua vez também apresenta a sua componente Kb em 9,57keV (linha IV). (2 pontos para acerto total, sendo 0,5 para cada acerto parcial em subitem).
- d) Para a determinação da concentração relativa em massa, podemos determinar a razão das integrais das linhas Ka de cada um dos elementos (linhas I e III), atentando-se para executar o cálculo apenas para a porção da linha acima do contínuo bremsstrahlung (ver figura ao lado). A altura equivalente da linha I é aprox. 1u.m. e da linha III de 4,5u.m. Já a largura das linhas em suas bases são aprox. 0,5 e 0,7. Calculando a área para uma forma triangular com esses valores de base e altura, obtemos razão de concentração de massa [Zn]/[Fe] ~ (0,7 x 4,5)/(0,5 x 1) ~ 6,3. (4 pontos, sendo 2 pontos para a identificação da forma de obtenção da estimativa, com atenção à subtração do contínuo, e 2 pontos para a execução da estimativa.)

