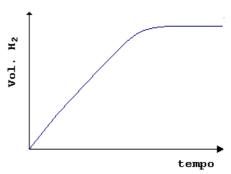
- O hidrogênio é usado na fabricação de inúmeros produtos importantes:
 - I. $H_2 + X \rightarrow metanol$
 - II. $H_2 + Y \rightarrow ciclo-hexano$
- III. $H_2 + Z \rightarrow \text{tripalmitato de glicerila}$ (gordura saturada) $\begin{pmatrix} H_2 \\ H_2 \\ OOCC_{15}H_{31} \\ H_2 \\ OOCC_{15}H_{31} \end{pmatrix}$
- a) Identifique X, Y e Z.
- b) Cite um uso para cada um dos produtos: metanol e gordura saturada.

Q.02

O equipamento de proteção conhecido como "air bag", usado em automóveis, contém substâncias que se transformam, em determinadas condições, liberando $N_{\!\!4}$ que infla um recipiente de plástico. As equações das reações envolvidas no processo são:

2 NaN
$$_3$$
 \longrightarrow 2 Na + 3 N $_2$ azoteto de sódio 10 Na + 2 KNO $_3$ \longrightarrow K $_2$ O + 5 Na $_2$ O + N $_2$

- a) Considerando que N₂ é gerado nas duas reações, calcule a massa de azoteto de sódio necessária para que sejam gerados 80 L de nitrogênio, nas condições ambiente.
- b) Os óxidos formados, em contato com a pele, podem provocar queimaduras. Escreva a equação da reação de um desses óxidos com a água contida na pele.


Dados: Volume molar de gás nas condições ambiente: 25 L/mol massa molar do NaN3: 65 g/mol

Para estudar a velocidade da reação que ocorre entre magnésio e ácido clorídrico, foram feitos dois experimentos a 15°C utilizando a mesma quantidade de magnésio e o mesmo volume de ácido. Os dois experimentos diferiram apenas na concentração do ácido utilizado. O volume de hidrogênio produzido em cada experimento, em diferentes tempos, foi medido a pressão e temperatura ambientes. Os dados obtidos foram:

Experi- mento	Tempo/min	0	1	2	3	4	5	6	7
I	(vol.H ₂)/cm ³	0	18	33	48	60	63	63	63
II	(vol.H ₂)/cm ³	0	28	49	60	62	63	63	63

a) Em qual dos experimentos a velocidade da reação foi maior? Justifique com base nos dados experimentais.

b) A curva obtida para o experimento I (15°C) está no gráfico ao lado. Neste mesmo gráfico, represente a curva que seria obtida se o experimento I fosse realizado a uma temperatura mais alta. Explique.

Q.04

Quer-se distinguir uma amostra de p-clorofenol de uma de o-nitrofenol, ambos sólidos.

- a) Determinou-se o ponto de fusão de cada amostra, utilizando um termômetro que permite a leitura da temperatura com incerteza de ± 1°C. Foi possível, com esta medida experimental, distinguir essas amostras? Explique.
- b) Em água, tais fenóis (ArOH) apresentam caráter ácido:

Mostre com cálculos que a determinação do pH de soluções aquosas desses fenóis, de concentração $0.01~\rm{mol/L}$, serviria para identificá-las.

Dados:

Substância	Ponto de fusão (°C)	Ka*		
p-clorofenol	43,5	1 x 10 ⁻⁹		
o-nitrofenol	45	1 x 10 ⁻⁷		

* Ka = constante de ionização, em água.

Proteínas são formadas por várias cadeias peptídicas que se mantêm unidas através de ligações do tipo I, II e III, formando uma estrutura complexa, como a esquematizada abaixo:

- a) Explique de que tipo são as ligações I, II e III assinaladas no esquema da proteína.
- b) Assinale, com um círculo, uma ligação peptídica na proteína esquematizada acima.

Q.06

O ácido nítrico é um importante produto industrial. Um dos processos de obtenção é fazer passar amônia (NH) e ar, sob pressão, por um catalisador a cerca de 850 °C, ocorrendo a formação de monóxido de nitrogênio e água. O monóxido de nitrogênio em presença do oxigênio do ar se transforma no dióxido, que em água forma ácido nítrico (HNQ) e monóxido de nitrogênio (que é reciclado no processo).

- a) Escreva as equações balanceadas que representam as diferentes etapas da produção de ácido nítrico através desse processo.
- b) O calor envolvido na primeira etapa, ou seja, a oxidação da amônia até o monóxido de nitrogênio, ajuda a manter o catalisador aquecido. Sendo assim, qual deve ser maior: a soma das energias de ligação dos reagentes ou a soma das energias de ligação dos produtos? Justifique.

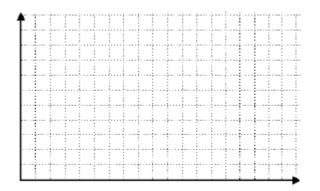
A 800°C, a constante de equilíbrio, Kp (expressa em termos de pressão parcial em atm), para o equilíbrio representado abaixo vale 0,22.

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

Explique o que aconteceria se carbonato de cálcio fosse aquecido, a 800°C, em recipiente aberto

- a) na Terra onde a pressão parcial do CQ atmosférico é $3 \times 10^{-4} \ \text{atm.}$
- b) em Vênus onde a pressão parcial do CQ atmosférico é 87 atm.

Q.08


Adicionando-se solução aquosa de sal A a uma solução aquosa de sal B, forma-se um precipitado em uma reação praticamente completa. Para se determinar os coeficientes estequiométricos dos reagentes, na equação dessa reação, fez-se uma série de 6 experimentos. Em cada um, a quantidade de A era fixa e igual a $4.0 \times 10^{-3} \text{mol}$. A quantidade de B era variável. Os dados destes experimentos estão na tabela abaixo.

Experimento	1	2	3	4	5	6
Volume (mL) da solução do sal B, 0,10 mol/L	6,0	12,0	18,0	24,0	30,0	36,0
massa (g) do precipitado formado	0,20	0,40	0,60	0,66	0,66	0,66

a) Calcule as quantidades, em mol, do sal B utilizadas nesses experimentos.

PROVA DE QUÍMICA - FUVEST 1997 - SEGUNDA FASE

b) No quadriculado lado, construa gráfico: de massa precipitado versus quantidade, em mol, de sal B. Através deste gráfico justifique quais devem ser os coeficientes estequiométricos de A e B.

Q.09

Estão representados abaixo quatro esteróides:

- a) Quais dentre eles são isômeros? Explique.
- b) Considerando que o colesterol é um composto insaturado, que reação poderia ocorrer, em condições apropriadas, se este fosse tratado com bromo (Br₂)?

Q.10

$$E^*$$
 (V)

 $HCHO + 2H^+ + 2e^- \longrightarrow CH_3OH$ 0,23

 $CH_3OH + 2H^+ + 2e^- \longrightarrow CH_4 + H_2O$ 0,59

 $O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$ 1,23

E* = potencial de redução para a semi-reação nas condições padrão.

PROVA DE QUÍMICA – FUVEST 1997 – SEGUNDA FASE

Com base nos dados acima, nestas condições,

- a) mostre que, em meio ácido, seria possível obter metanol a partir de metano e oxigênio.
- b) Escreva a equação balanceada que representaria esta transformação.